
TRUSTED PROCESS CLASSES

William L. Steffan
Tracor Applied Sciences, Incorporated

503A Coliseum Boulevard
Montgomery, Alabama 36109

Voice: 334-271-6804 FAX: 334-244-0058
wsteffan@b856s1.ssc.af.mil

Jack D. Clow
SenCom Corporation

6004C East Shirley Lane
Montgomery, Alabama 36117

Voice: 334-277-1972 FAX: 334-277-1932
jclow@b856s1.ssc.af.mil

ABSTRACT

Vendors who develop Trusted Computing Base (TCB) equipped secure operating systems
face difficult choices as they design and implement the requisite protection features
appropriate to the evaluation class being targeted (e.g., Labeled Security Protection, Class
B1). On the one hand, vendors seek to meet each and every evaluation class requirement
unconditionally, being careful to limit every possible opportunity for latent vulnerabilities to
occur. However, on the other hand, vendors must not implement their secure product with so
many constraints that it loses its competitive advantage and utility as an operating system
having general applicability throughout the marketplace. Balancing these conflicting goals
often results in the vendor's implementing a more restrictive rule set than permitted by
theoretical considerations.

Unfortunately, unlike the published criteria for TCB classes themselves1, developers who
implement trusted processes have had to depend on ad hoc experimentally derived guidelines
and rules to meet both mission and security requirements simultaneously.

This paper presents a new methodology, derived from the theory of a TCB-equipped
operating system and practical experience, to explicitly determine to which of several classes a
specific trusted process* belongs, as well citing applicable programming confinement rules to
ensure additional risks, if any, will be acceptable.

* A trusted process is a program, module, or algorithm which has extraordinary privilege(s),
which if not otherwise strictly controlled and limited, could subvert the security policy in
unpredictable ways -- in the extreme, subvert the protection domain provided by the TCB for
itself.

Keywords: Trusted Computing Base, trusted process, mandatory access controls,
discretionary access controls, auditing, certification, accreditation.

TRUSTED PROCESS CLASSES

1. Background. Vendors who develop Trusted Computing Base (TCB) equipped secure
operating systems face difficult choices as they design and implement the requisite protection
features appropriate to the evaluation class being targeted (e.g., Labeled Security Protection,
Class B1). On the one hand, vendors seek to meet each and every evaluation class
requirement unconditionally, being careful to limit every possible opportunity for latent
vulnerabilities to occur. However, on the other hand, vendors must not implement their secure
product with so many constraints that it loses its competitive advantage and utility as an
operating system having general applicability throughout the marketplace. Balancing these
conflicting goals often results in the vendor's implementing a more restrictive rule set than
permitted by theoretical considerations. For example, while formal TCB theory would permit a
high-clearance program (i.e., a subject) to read a low-sensitivity data item (i.e., an object),
some vendors enforce a clearance SHALL ALWAYS EQUAL sensitivity rule rather than the
more general clearance SHALL BE GREATER THAN OR EQUAL TO sensitivity rule permitted
by theory.

Thus, for these and other reasons, TCB-equipped operating systems usually fall short of
providing security protection features needed to support every possible customer application.
In turn, then, software developers who use these TCB-equipped operating systems to meet
customer mission-oriented applications face some awkward possibilities:

• Failing to meet the customer's mission requirements since the vendor's TCB-equipped
operating system and its protection features prohibits achieving some essential mission
functionality.

• Failing to meet the customer's security requirements since the vendor's TCB-equipped

operating system does not provide the necessary features to protect some essential
mission functionality and/or sensitive information.

• Failing to meet both the customer's mission and security requirements since the

vendor's TCB-equipped operating system implements a more restrictive enforcement
policy than that permitted by theory.

Classically, the solution has been to incorporate developer-written trusted processes so that

• Customer mission requirements will be met unconditionally,

• While accepting some additional risk by permitting local controlled deviations to

otherwise globally applicable security policy enforcement rules.

Unfortunately, unlike the published criteria for TCB classes themselves1, developers who
implement trusted processes have had to depend on ad hoc experimentally derived guidelines
and rules to meet both mission and security requirements simultaneously.

2. Purpose. This paper presents a new methodology, derived from the theory of a TCB-
equipped operating system and practical experience, to explicitly determine which of several

classes a specific trusted process belongs to. It also cites applicable programming
confinement rules to ensure that any additional risks will be acceptable.

3. Definitions. Definitions for key concepts and terms used herein follow.

a. Discretionary Access Controls. Discretionary Access Controls (DAC) are rules enforced
by the reference monitor which provide for need-to-know violation prevention as prescribed by
the security policy for the system (i.e., an entity’s functional role is a sufficient basis for
permitting access to system-protected resources).

b. Integrity Principle. A fundamental underlying assumption of a TCB-equipped operating
system that states a high-integrity entity (e.g., the reference monitor) shall NEVER "trust"
assertions made by a lower-integrity entity (e.g., an untrusted applications program), but a low-
integrity entity shall ALWAYS "trust" assertions made by a higher-integrity entity.

c. Least Privilege Principle. A fundamental mandate for a TCB-equipped operating system
that states every entity shall be granted ONLY the MINIMUM privilege(s) essential to perform
its assigned function(s) and NO MORE.

d. Mandatory Access Controls. Mandatory Access Controls (MAC) are rules enforced by
the reference monitor which provide for compromise prevention as prescribed by the security
policy being enforced for the system (e.g., an entity’s clearance is a sufficient basis for
permitting access to system-protected resources).

e. Reference Monitor. A reference monitor is that portion of a TCB-equipped operating
system having exclusive responsibility for enforcing Discretionary Access Controls and
Mandatory Access Controls according to mathematically precise rules.

f. Tranquillity Principle. A fundamental underlying assumption of the Bell-LaPadula formal
security model for a reference monitor which states that, once identified to the reference
monitor, the sensitivity level contained in a subject's sensitivity label (or an object's sensitivity
label) shall remain invariant unless explicitly changed under the express control of the
reference monitor.

g. Trusted Process.

(1) A trusted process is a program, module, or algorithm written expressly by a
developer that has these characteristics:

• May require over-riding security policy enforcement mechanisms or their
underlying assumptions.

• Does not subvert security policy mandated rules except in explicitly controlled

ways in a constrained local context.

• NEVER enforces globally applicable security policy mandated rules.

(2) A trusted process is a program, module, or algorithm which has extraordinary
privilege(s), which if not otherwise strictly controlled and limited, could subvert the security

policy in unpredictable ways -- in the extreme, subvert the protection domain provided by the
TCB for itself.

4. Methodology. This section examines some relevant factors to determine the Trusted
Process Class for any given trusted process.

a. Trusted Process Observations. In practice, as suggested by themes given in TCB
Subjects - Privileges and Responsibilities in [2], trusted processes may be granted privileges
which over-ride enforcement rules for DAC, MAC, Tranquillity Principle, or any combination
thereof. For example:

• To produce an unclassified report about the existence of, but not the value of, some
classified fact, a low-clearance trusted process subject needs to read, but not
reveal, the information content in a high-sensitivity object. To do this, the trusted
process subject must temporarily over-ride MAC enforcement rules.

• To perform a regrade on some imported file, a high-clearance trusted process

subject must change the sensitivity label content (i.e., the sensitivity level), but not
the information content in the object itself, for a low-sensitivity object. To do this,
the trusted process subject must temporarily over-ride the Tranquillity Principle.

• To perform an emergency recovery action, a trusted process subject must be

granted temporary execution privilege over-riding DAC enforcement rules.

• To provide standard agency-specified security markings on human readable media,

a trusted process subject must intercept and faithfully translate internally coded
binary representations for the sensitivity label content. To do this, the trusted
process subject must uphold the Integrity Principle, while not subverting DAC, MAC,
Tranquillity Principle, or other security policy-prescribed rules.

b. Trusted Process Classes. The cited examples suggest a methodology to determine the
specific trusted process class for any given trusted process. As Figure 1 illustrates, these
trusted process classes can be enumerated according to whether the trusted process must
over-ride rules for DAC, MAC, Tranquillity Principle, or combinations thereof.

Over-Ride Privilege Granted
Trusted Process Class Tranquillity

Principle
Mandatory

Access Controls
Discretionary

Access Controls
Permitted
Action(s)

0 --- --- --- Read Only
1 --- --- Yes
2 --- Yes ---
3 --- Yes Yes Read,
4 Yes --- --- Write,
5 Yes --- Yes or both
6 Yes Yes --- Read & Write
7 Yes Yes Yes

Label Content Privileges

Figure 1, Trusted Process Classes

The last row in Figure 1 lists some supplementary guidelines to help determine the appropriate
trusted process class. For example, if a trusted process supports a regrade capability by
changing ONLY the sensitivity label content (or sensitivity level), it needs to over-ride the
Tranquillity Principle ONLY and is, therefore, a Class 4 Trusted Process. In a similar fashion, a
trusted process supporting a program producing an unclassified report about the existence of
some classified fact, but not the value of the fact, needs to over-ride MAC enforcement by
examining the content of some object -- a Class 2 or Class 3 Trusted Process.

The right-most column in Figure 1 gives the potential operations a trusted process class might
perform. Thus, a Class 4 Trusted Process may have to both read and write to the sensitivity
label for an object (or subject) as it operates with Tranquillity Principle over-ride privileges.
Note the Class 0 Trusted Processes are special cases which require no over-ride privilege, but
are, accordingly, restricted to read only operations -- as would be needed to translate the
binary sensitivity label content used in the TCB-equipped operating system itself to the binary
sensitivity label content used in the TCB-equipped database management system.

Figure 1 also illustrates that, as the Trusted Process Class number increases, so do the risks
associated with using trusted processes in that class. This is especially true for Trusted
Process Classes 6 and 7 where, unless there are compelling mission satisfaction reasons
involved, the risks may be unacceptably high.

Finally, using the Integrity Principle, it is easy to show that as the Trusted Process Class
number increases, the inherent trustworthiness of each class decreases since the potential for
"abuse" increases. Thus, trusted processes which do not over-ride the Tranquillity Principle
are more trustworthy than those which do.

5. Trusted Process Implementation. In the text above, the phrases "... the potential
operations a trusted process class might have to perform." and "... may have to both read and
write to the sensitivity label ..." are, regrettably, ambiguous. Resolving such ambiguity
demands that the Least Privilege Principle be explicitly invoked for each and every trusted
process. Moreover, there are MANDATORY programming confinement rules that must be
carefully followed.

a. Trusted Process Programming Confinement Rules (PCR). This section cites the
programming confinement rules that a trusted process developer MUST obey.

(1) Local Domain Context Storage [PCR-1]. Each and every trusted process shall use
local domain context storage ONLY for variables used in the trusted process.

(2) Local Domain Context Storage Purge [PCR-2]. For each and every trusted
process, the last step prior to exiting from the trusted process shall purge (i.e., set to all binary
zero) all variables used in the trusted process.

(3) Trusted Process Audit [PCR-3]. Each and every trusted process invocation shall
be auditable3 by the TCB-equipped operating system per the schedule in Table PCR-1.

Table PCR-1, Trusted Process Audit Requirements

Trusted Process Class Audit Required Remarks
0 Optional May be selectively audited
1 Optional May be selectively audited
2 Optional for Read

ALWAYS for Write

3 Optional for Read
ALWAYS for Write

4 ALWAYS No Exceptions Permitted
5 ALWAYS No Exceptions Permitted
6 ALWAYS No Exceptions Permitted
7 ALWAYS No Exceptions Permitted

(4) Assignment Statement Restrictions [PCR-4]. For MAC over-ride privileged trusted
processes, the value of the object read shall NEVER appear ALONE on the right-hand side of
an expression in an assignment statement.

(5) Function or Subroutine Return Parameter Restrictions [PCR-5]. For MAC over-ride
privileged trusted processes, the value of the object read shall NEVER be used as the return
value for the trusted process function or subroutine.

(6) Least Privilege Principle Restrictions [PCR-6]. Each and every trusted process
shall ONLY use the MINIMUM privilege(s) from the over-ridden set to perform its function.

(7) Computational Expression Restrictions [PCR-7]. For MAC over-ride privileged
trusted processes, the value of the object read may be used in a computational expression
provided that the value of the object read shall NEVER be revealed to any entity outside the
local domain of the trusted process itself.

(8) Logical Expression Restrictions [PCR-8]. For MAC over-ride privileged trusted
processes, the value of the object read may be used in a logical expression provided that the
value of the object read shall NEVER be revealed to any entity outside the local domain of the
trusted process itself.

(9) Single Functionality Restrictions [PCR-9]. Each and every trusted process shall
perform a SINGLE well-defined function.

(10) Single Entry Restrictions [PCR-10]. Each and every trusted process shall have a
SINGLE well-defined entry point for execution to begin.

(11) Single Exit Restrictions [PCR-11]. Each and every trusted process shall have a
SINGLE well-defined exit point for execution to conclude.

(12) Trusted Process Author [PCR-12]. Each and every trusted process shall have an
appropriately cleared assigned author whose work shall be INDEPENDENTLY verified by an
appropriately cleared analyst (e.g., for a SECRET system, a SECRET cleared person).

(13) Configuration Management Handling Restrictions [PCR-13]. Each and every
trusted process shall be assigned to a "Trusted Process Library" with access restricted to
specifically named persons ONLY.

(14) Trusted Process Qualification Testing [PCR-14]. Each and every trusted process
shall be tested comprehensively and the test results explicitly addressed in the Security Test
and Evaluation (ST&E) Report.

b. Trusted Process Programming Confinement Rule Assignment Schedule. Table PCR-2
gives the schedule for applying the MANDATORY programming confinement rules cited in this
section.

Table PCR-2, Trusted Process Programming Confinement Rule Assignments

Rule Assignment(s)
Trusted Process

Class
Tranquillity
Principle

Mandatory Access
Controls

Discretionary
Access Controls

Universally
Applicable PCRs

0
1
2 4, 5, 7 ,8
3 4, 5, 7, 8 1, 2, 3, 6,
4 9, 10, 11,
5 12, 13, 14
6 4, 5, 7, 8
7 4, 5, 7, 8

Label Content Privileges

6. Summary. The need for trusted processes appears to circumvent the basic philosophy for
using a TCB-equipped operating system in the first place -- why expend valuable resources for
a secure Trusted System and then permit "deviations" to occur with trusted processes?

The facts are that developers will use trusted processes to meet mission imperatives in a TCB-
enriched environment. Having done so, there is an inherent responsibility to show these
trusted processes exhibit “trustworthiness” in a justifiable way.

By suggesting ways to explicitly deal with “trustworthiness,” the methodology given in this
paper fosters compliance with both theory and practicality. Moreover, its techniques can help
in understanding the distinctions among the several types of trusted processes likely to be
encountered in the “real world” -- some are relatively benign, others can entail serious, if not
potentially catastrophic threats. The paper also suggests practical programming confinement
rules which limit permitted actions a trusted process class can or should take thus providing a
basis for assessing associated risks.

In a broader sense, “security bit-meisters” and system developers need to assure senior
management that their investment in a secure system reflects a sound business decision. We
believe the concepts developed in this paper can provide a common frame of reference for
these necessary assurances.

References

[1] DoD Trusted Computer System Evaluation Criteria, DOD 5200.28-STD, December 1985.

[2] A Guide to Understanding Security Modeling in Trusted Systems, NCSC-TG-010,
Version 1, October 1992.

[3] A Guide to Understanding Audit in Trusted Systems, NCSC-TG-001, Version 2, June 1988.

Acknowledgment

Comments provided by the referees pointed out where we needed to hone and refine several
important concepts; we thank them for their valuable insight and helpful suggestions.

